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We study a constrained statistical-mechanical model in two dimensions that has three useful descriptions.
They are �i� the Ising model on the honeycomb lattice, constrained to have three up spins and three down spins
on every hexagon, �ii� the three-color and fully packed loop model on the links of the honeycomb lattice, with
loops around a single hexagon forbidden, and �iii� three Ising models on interleaved triangular lattices, with
domain walls of the different Ising models not allowed to cross. Unlike the three-color model, the configuration
space on the sphere or plane is connected under local moves. On higher-genus surfaces there are infinitely
many dynamical sectors, labeled by a noncontractible set of nonintersecting loops. We demonstrate that at
infinite temperature the transfer matrix admits an unusual structure related to a gauge symmetry for the same
model on an anisotropic lattice. This enables us to diagonalize the original transfer matrix for up to 36 sites,
finding an entropy per plaquette S /kB�0.3661¯ and substantial evidence that the model is not critical. We
also find the striking property that the eigenvalues of the transfer matrix on an anisotropic lattice are given in
terms of Fibonacci numbers. We comment on the possibility of a topological phase, with infinite topological
degeneracy, in an associated two-dimensional quantum model.
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I. INTRODUCTION

Classical lattice statistical-mechanical models with local
constraints have been of great interest for decades. By “local
constraint,” we mean a local rule which restricts the allowed
configurations. A famous example is that of the hard-core
close-packed dimer model �1,2�. The degrees of freedom are
dimers stretching between adjacent sites of a lattice, while
the hard-core and close-packing constraints mean that each
site of the lattice is touched by exactly one dimer. Another
famous example is Baxter’s three-color model, where each
link of the honeycomb lattice is covered by one of three
“colors” of dimers, with the constraint that each site is
touched by all three colors �3�.

Another oft-studied constraint is to require that the de-
grees of freedom be “loops,” i.e., one-dimensional objects
without ends. For example, both close-packed hard-core
dimers and the three-color model can be viewed as loop
models. In the latter case, the links colored by two of the
colors �say R and G� form closed loops of alternating R and
G colors. Since every vertex has one R and one G touching,
the three-color model is therefore equivalent to a fully
packed loop model �every site has one loop going through
it�. Each loop receives a weight 2, since there are two pos-
sible ways of ordering R and G around each loop.

One interesting limit of constrained models is at infinite
temperature, where each allowed configuration has the same
Boltzmann weight. The partition function in this limit is a
purely combinatorial quantity: it simply counts the number
of configurations. Because of the constraints, the physics of
such models is still very rich. For example, the three-color
model is critical, as is the hard-core close-packed dimer
model on the square lattice �2�. Obviously, not all con-
strained models are critical: dimers on the triangular lattice

�or any nonbipartite lattice� have exponentially decaying cor-
relators �4�.

The purpose of this paper is to present a constrained lat-
tice model that has several rather interesting properties.
There are three equivalent ways of defining the model. One
is as an Ising model on the honeycomb lattice with a con-
straint around each hexagon; one is with a constraint on the
three-color model and a third is as three coupled Ising mod-
els. The latter form is most naturally given in terms of loops
representing Ising domain walls, and is also the representa-
tion where its properties are most transparent.

This model is of interest for several reasons. It is defined
in terms of simple local degrees of freedom and constraints,
yet exhibits fascinating conservation laws. As we will detail,
the transfer matrix decomposes into sectors which are la-
beled by non-Abelian �and nonlocal� charges. The number of
distinct sectors exponentially increases as the size of the sys-
tem increases. This symmetry enables us to do exact diago-
nalization of the transfer matrix for systems of sizes up to 36
sites across, i.e., a Hilbert space initially of size 236. We
know of no nontrivial system with such a property.

Despite the fact that the conserved charges are nonlocal,
the configuration space of the model has the striking property
that it is connected under simple local moves. Even though
the three-color model is closely related to ours, to relate all
its different configurations requires changing degrees of free-
dom arbitrarily far apart . Since we give a precise relation
between the three-color model and ours, we thus have lo-
cated the obstruction to connectivity �the “11th” vertex dis-
cussed below� in the three-color model. Not only does this
mean that our model is amenable to Monte Carlo simula-
tions, but it should prove interesting to study its classical
dynamics �5,7�.

A new reason to be interested in two-dimensional classi-
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cal lattice models with constraints comes from quantum
physics. The motivation is to find phases with topological
order, where there is no nonvanishing local order parameter,
but only nonlocal ones. The idea for building such a quantum
model by starting with a classical magnet with local con-
straints came long ago �8�, and a theoretical triumph in prov-
ing they exist came from a quantum eight-vertex model �9�
and a quantum dimer model on the triangular lattice �4�. The
two-dimensional quantum models are defined by using each
configuration in a two-dimensional classical lattice model as
a basis element of the Hilbert space. One characteristic of
topological order is that the number of ground states depends
on the genus of two-dimensional space. Constrained lattice
models give natural ways of defining the different sectors
which, with appropriate choice of Hamiltonian �10�, corre-
spond to different ground states in the quantum theory. When
writing the eight-vertex or dimer models as loop models, the
different ground states are labeled by the number �mod 2� of
loops which wrap around cycles of the torus.

In Sec. II we introduce these models and show that they
are equivalent. We relate our model to several others in the
Appendix, enabling us to put upper and lower bounds on the
entropy. In Sec. III, we discuss the dynamics under local
moves, showing that the configurations on the plane or
sphere are all connected by simple local moves. On surfaces
with noncontractible cycles, we classify the infinitely many
separate dynamical sectors. In Sec. IV, we give arguments
which suggest that our model is not critical. We also develop
in Sec. V and solve in Sec. VI a closely related model which
has a gauge symmetry. We exploit this symmetry in Sec. VII
to show how to reduce dramatically the size of the original
transfer matrix. This enables us to exactly diagonalize the
transfer matrix for quite large lattices, and the results again
suggest that the model is not critical. In Sec. IX we present
our conclusions, and discuss applying our results to build a
quantum model with topological order.

II. MODEL AND ITS THREE DESCRIPTIONS

The model we are introducing can be described in three
equivalent ways. Here we present them, and then demon-
strate their equivalence.

Model 1. The degrees of freedom of the Ising model are
“spins” �i taking values of ±1 at each site i of some lattice.
The energy in general from nearest-neighbor interactions is
given by

E = J�
�ij�

�i� j .

The Ising model on the honeycomb lattice has a critical point
when K=J /kBT=arcsinh�	3� /2 �11�. Our model 1 is the
Ising model on the honeycomb lattice, with the constraint
that there must be three up spins and three down spins
around each hexagon, i.e.,

model 1: Mh 
 �
i�˝

�i = 0. �1�

This is quite a strong constraint, retaining only 20 of the
original 64 possibilities for the spins around each hexagon.

We will mostly discuss the infinite temperature limit T→�
or K=0, in which each allowed configuration has equal
weight.

Model 2. The degrees of freedom in the three-color model
are three colors, say R, G, and B, which are placed on the
links on the honeycomb lattice. The usual constraint in the
three-color model is to require that at each site of the lattice,
all three colors appear. In other words, links of the same
color can never touch. When the partition function is simply
the sum over all allowed configurations �i.e., in the infinite-
temperature limit�, the model is critical and integrable �3�.
Our model 2 is the three-color model with an additional con-
straint forbidding configurations which have the same two
colors alternating around any given hexagon. In a picture,

model 2: forbid

c�

c c

c� c�

c

, �2�

where c�c� can be any of R, G, or B. This forbids 6 of the
66 allowed configurations around a hexagon in the three-
color model.

Imposing the constraint �2� in the fully packed loop for-
mulation of the three-color model forbids the shortest loops,
of length 6. The constraint is symmetric under permutations
of R, G, and B, so it forbids all “short” loops, no matter
which two colors are chosen to form the loops.

Model 3. Consider now Ising spins si= ±1 on the triangu-
lar lattice. Instead of studying a single Ising model on this
lattice, we instead consider three identical Ising models, on
each of the three identical triangular sublattices of the trian-
gular lattice. This has an �Ising�3 critical point when K
=arcsinh�1/	3� /2 �11�. The domain walls for an Ising model
separate unlike spins; they live on the links of the dual lat-
tice. For each of our three Ising models on the triangular
lattice, its dual lattice is the honeycomb lattice made up of
the sites of the other two Ising models. It is not possible for
the domain walls of a given Ising model to cross or even
touch, but the walls of the different decoupled models can
cross and touch. Our constraint couples the three Ising mod-
els by not allowing the walls of different models to cross
�although they can touch�. A configuration in this model is
displayed in Fig. 1. In terms of the spins, consider a hexagon
on the triangular lattice, comprised of six sites surrounding a
given site. Label the six spins around this hexagon by si, so
that s2, s4, and s6 are in one of the three Ising models, while
s1, s3, and s5 are in another. Denote di=sisi+2, with the sub-
scripts interpreted mod 6. A domain wall occurs when di=
−1. The constraint that domain walls not cross in terms of
these spins is then

model 3: C j 
 3 − �
i=1

6

�di − didi+1 + didi+3/2� = 0, �3�

where j is the site on the triangular lattice at the center of the
hexagon.
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The allowed domain walls inside this hexagon are of the
types illustrated in Fig. 3 below. Model 3 can equivalently be
described in terms of closed mutually avoiding loops on the
triangular lattice, with the added restriction that loops must
turn by ±120° at every site.

These three models are equivalent to each other under
local reformulations of the degrees of freedom. First let us
recall the mapping of the three-color model without con-
straint �2� to an Ising model on the honeycomb lattice �12�.
The Ising variables represent chiralities in the three-color
model; this chirality representation occurs in the
superconducting-array realization of the three-color model
�13,14�. Consider a given configuration in the three-color
model. There are six possible configurations of the three-
color model around each site of the honeycomb lattice: Put
an Ising spin + on the site if the colors on the three links
touching it are RGB clockwise, and spin − if the three are
RGB counterclockwise. Going around each hexagon, it is
easy to check that there are either 0, 3, or 6 up spins. It is
also easy to check for any configuration with 0, 3, or 6 up
spins, one can reverse the map and find a configuration in the
three-color model. Ignoring boundary conditions, there are
three configurations in the three-color model for each in the
Ising model, so the map can be made one-to-one by specify-
ing the color on one link. The three-color model at infinite
temperature therefore maps onto the Ising model on the hon-
eycomb lattice with K=0 and the requirement the sum of the
�i around hexagon obeys Mh=0, ±6. One can generalize the
three-color model to include interactions equivalent to a non-
zero K if desired; this is easily done in the domain-wall
formulation given below.

The equivalence of model 1 to model 2 is now obvious.
Hexagons in the three-color model with alternating colors as
in Eq. �2� correspond to having Mh= ±6 in the Ising model.
These are forbidden in model 1 by Eq. �1�, and in model 2 by
Eq. �2�.

To show the equivalence of model 1 with model 3, we
re-express the degrees of freedom in model 1 in terms of
antidomain walls. Every time adjacent spins are the same,
we draw an antidomain wall on the link of the dual lattice
separating them. These antidomain walls therefore form
loops on the dual triangular lattice. Each of the configura-

tions on each hexagon obeying the constraint �1� corre-
sponda to one of the types of antidomain-wall configurations
illustrated in Fig. 2. There are ten different configurations of
three different types: the empty one, six �related by 60 de-
gree rotations� with two antidomain walls, and three �related
by 60 degree rotations� with four antidomain walls. Ising
domain walls have a weight e−2K per link. Since antidomain
walls are simply the complement of the domain walls, they
can be taken to have weight e2K per link.

These antidomain walls in model 1 correspond to domain
walls in model 3. The triangular lattice for model 3 is simply
the dual lattice of the honeycomb lattice for model 1. The
domain walls in a triangular-lattice Ising model make a
±120° turn at every site, just like the antidomain walls in Fig.
2. If the three Ising models in model 3 were decoupled, there
would be 16 different domain-wall configurations going
through each site of the triangular lattice, because there are
four possibilities for each of the two Ising models whose
domain walls go through this point. There are only ten pos-
sibilities in Fig. 2.

Models 1 and 3 are therefore equivalent if we restrict to
these ten, which are redrawn in Fig. 3. As is obvious from
the figures, the ones disallowed are those where the domain
walls cross. Disallowing crossings leaves exactly the ten, so
the noncrossing constraint is the only one. In Fig. 1, we drew
the domain walls for the three different Ising models with
solid, dashed, and dot-dashed lines, to emphasize the fact
that they do not cross, with each forming closed loops. In
Fig. 3, we drew these with the dotted and dashed lines, but
the same ten vertices occur at any point on the triangular
lattice with the appropriate types of lines. We have therefore
shown that model 3 is the same as model 1, up to unimpor-
tant constants in front of the partition functions. Our model is
therefore a “ten-vertex model” on the triangular lattice.
These vertices are a subset of those in the 32-vertex model
discussed in �15�.

These proofs of course mean that model 2 is equivalent to
model 3 as well, so the three-color model with and without
Eq. �2� can also be written in terms of a vertex model on the

+

−

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+ + +

+

++

+ +

+

− −

−

− +

+ + +

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

−

+ + + + + + ++

FIG. 1. �Color online� Three Ising models on three triangular
sublattices. The constraint �3� requires that the domain walls do not
cross.
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FIG. 2. �Color online� The three types of antidomain-wall con-
figurations on a hexagon in model 1. The Ising spins here are de-
noted by u and d to distinguish them from the Ising spins in model
3, which are denoted by ±.

FIG. 3. �Color online� The ten possible domain-wall configura-
tions in model 3, i.e., the ten vertices.
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triangular lattice. The usual three-color model also allows the
11th vertex pictured in Fig. 4.

This vertex is a source or sink of domain walls, and so the
three-color model without constraint �2� cannot be mapped
onto three Ising models. In model 1, this 11th vertex corre-
sponds to a hexagon with all up or all down spins, i.e.,
Mh= ±6.

In the Appendix, we relate our model to two others: hard
hexagons on the triangular lattice, and a generalized Ising
antiferromagnet. Our model is found from these by relaxing
constraints, so these models give lower bounds on the en-
tropy of ours.

III. CONNECTING CONFIGURATIONS
BY LOCAL MOVES

An important question in many physical applications of
two-dimensional geometrically constrained models is
whether the space of states is connected under local moves.
It is essential if one is to study either classical or quantum
dynamics, and is also useful for doing Monte Carlo simula-
tions �16�. For example, to build the quantum models dis-
cussed in the Introduction, without connectivity under local
moves, the Hamiltonian is nonlocal. The three-color model is
not connected: any closed loop of bonds of the honeycomb
lattice that contains only two colors will give a different
configuration if those two colors are permuted. Even though
there exist short loops on the lattice �the shortest loop is a
single hexagon�, the space of states is not connected unless
the dynamics is able to permute arbitrarily large loops �5–7�.

In this section we discuss the properties of our model
under local dynamics. We show that, unlike the three-color
model, the connected sectors can be enumerated simply and
correspond to topological classes of sets of nonintersecting
loops in the plane. Since we have shown that the constraint
�2� turns the three-color model into our model, this result
illuminates the reason why the three-color model is not con-
nected by local moves.

The most-local dynamics of the Ising variables of model 1
that conserves the constraint �1� is to act on hexagons where
the spins alternate up and down around the hexagon. Flip-
ping each up spin to down and each down to up around such
a hexagon preserves the constraint not only on the original
hexagon, but also on each of its six neighbors as well. We
display this flip in Fig. 5. In model 3, this corresponds sim-
ply to flipping the Ising spin at the center of this hexagon,
i.e., sending si→−si.

This is the only local move necessary to connect configu-
rations. This is easiest to see in the loop representation. Since
in model 3 the flip changes the spin at the center of this
hexagon, it simply flips the model-3 loop variables on the
hexagon surrounding this hexagon of model 1. An example
is illustrated in Fig. 6.

For example, if all six of the links on the surrounding
hexagon are empty, the flip creates a loop of minimal length.
If they are all full, this is a minimal-length loop surrounding
the hexagon, and the flip removes the loop. In other cases, it
shrinks or expands the loop without creating any loose ends.

It is now easy to see how the flip connects configurations.
A loop of minimal length has a flippable hexagon inside it,
so these can be removed by one flip. Longer loops can be
shrunk and then removed by repeatedly flipping. If there are
loops inside other loops, then the ones inside need to be
removed first. When space is topologically a sphere, all con-
figurations are therefore connected to the empty one. Since
all processes can be reversed, this means all configurations
on the sphere are connected.

When space has noncontractible cycles, however, not all
loops can be removed. In order to use the formulation of
model 3, the periodic boundary conditions around a cycle
must identify sites of the same triangular sublattice. When
this is done, the loops are of three distinct types, as seen in
Fig. 1. Since flips cannot move two loops of different types
through each other, loops which wrap around a noncontract-
ible cycle can only be removed if they are adjacent to an-
other of the same type. The flip illustrated in Fig. 7 turns two
adjacent noncontractible loops of the same type into two
contractible ones.

When space is a cylinder, the different sectors can be
enumerated simply: a sector is given by a sequence of loop
colors �those encountered reading from left to right along the
cylinder, for example�, with an even number of adjacent oc-
currences of the same colors being equivalent to the identity.
Mathematically, this set is isomorphic to the free group on
three elements a, b, c, with the relations a2=b2=c2=1. Put-

FIG. 4. �Color online� The 11th vertex in the three-color model
without constraint �2�.
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FIG. 5. �Color online� The flip in terms of Ising spins in
model 1.

FIG. 6. �Color online� An example of the effect of a flip on a
loop. The alternating Ising spins in model 1 around the shaded
hexagon are those flipped, as illustrated in Fig. 5.
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ting two cylinders next to each other defines a group action
on the set of topological sectors, and this group action is
non-Abelian: for example, abab is not the same as a2b2=1.
Figure 8 shows an example of how the nonintersection con-
straint can prevent annihilation of two loops of the same
color. Each sector corresponds to a conserved charge in the
transfer matrix; we will define these in Sec. V. When build-
ing a quantum model based on this classical model, each of
these sectors will correspond to a ground state of an appro-
priately defined Hamiltonian. We will discuss the quantum
model further in Sec. VIII.

Finally, when the model is defined on a torus, all noncon-
tractible loops must go around the same cycle. This cycle can
be labeled as mc�1+nc�2, where m and n are integers, and c�1
and c�2 define the torus. Most topological sectors on the torus
can be labeled by Sc�St, where Sc is a nontrivial element of
the free group defined above with the additional requirement
that products must be interpreted cyclically, and St is an el-
ement of SL�2,Z�, the group of modular transformations of
the torus. SL�2,Z� is generated by exchanging m↔n, and
shifting n→n+1. Topological sectors not of this form are the
trivial sector Sc=1 �i.e., no St�, and sector with a single loop
�i.e., Sc=a, b, or c�, where St=Z2�Z2.

IV. FIELD-THEORY APPROACHES

A basic question about our model is if it is critical. We can
gain insight into this question by studying the field theories
valid near two critical points which occur when relaxing or
increasing the constraints.

Three decoupled Ising models are critical when K is ap-
propriately tuned. In the continuum limit, the critical point
can be described by using conformal field theory �18�. One
important thing conformal field theory allows one to do is
classify all the operators of the theory. The Ising model has
only two relevant rotationally invariant ones, the spin field
and the energy operator �. Perturbing the critical point by the
latter corresponds to changing the temperature, i.e., taking K
away from Kc, so in the lattice model we can identify

� � sisj � d�ij�

so that d�ij�=−1 corresponds to a domain wall between i and
j. A useful symmetry of the Ising model is Kramers-Wannier
duality, which shows the equivalence of high- and low-
temperature partition functions. In terms of the spins and
fields, it takes d→−d and �→−�.

To reach our model 3, one must perturb the �Ising�3 criti-
cal point to enforce the constraint C j =0 from Eq. �3�. By
construction, C j =0 when the domain walls through this hexa-
gon do not cross, and C j =6 when they cross. Thus to reduce
the weight of configurations where domain walls cross, we
add C j to the energy with positive coefficient �, i.e.,

E = E0 + ��
j

C j ,

where E0 is the energy of three decoupled Ising models. The
constraint �3� is enforced in the �→� limit. This perturba-
tion is clearly relevant, since it includes the energy operators
dj in the three individual models, and marginal terms which
couple the two models. A key fact to notice is that C j is not
invariant under any of the dualities of the three Ising models.

An important result in two-dimensional statistical me-
chanics is the existence of a “c theorem” �19�. The c theorem
says that there is a function c of the parameters of the theory
satisfying a very important property: it cannot increase under
renormalization group flows. Moreover, at a critical point its
value is known from conformal field theory—it is a quantity
called the central charge. Thus if one starts at a known criti-
cal point and perturbs by a relevant operator, the fact that c
must decrease means that either the flow must end up at a
critical point with a smaller value of c, or at no critical point
at all.

The Ising critical point has c=1/2. Since our model is a
relevant perturbation of three Ising models, this implies that
either our model is not critical, or if it is critical, it should
have c�3/2. The three-color model �at infinite temperature�
is critical, and has c=2 �20–22�. Thus imposing constraint 2
on the three-color model should move the model away from
the three-color critical point. This is in accord with the nu-
merics discussed below.

An obvious question is if our model is critical at some
value of K. While it is conceivable, it does not seem likely.
One can cancel the relevant piece dj of C j by changing the
temperature of the three Ising models. This leaves the mar-
ginal terms quadratic in dj. These marginal terms can change
the dimensions of operators, so a fine-tuned model could be
critical. However, since the constraint C j =0 violates duali-

FIG. 7. �Color online� A flip which converts noncontractible
loops into contractible ones.

≠

FIG. 8. �Color online� Inequivalent sectors on the annulus,
which is topologically equivalent to a finite cylinder. The two outer
loops cannot move through the inner loop to annihilate, because of
the nonintersection constraint.
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ties, this critical point is not likely to be the �Ising�3 one. This
argument does not preclude a flow to a critical point with a
lesser central charge.

One candidate for a flow is the hard-hexagon model. The
critical point in this model has c=4/5; it is in the same
universality class as the three-state Potts model �15�. How-
ever, it occurs very far from the hard-hexagon model of in-
terest, for several reasons. First, to get our model, one must
allow configurations not present in the hard-hexagon model
discussed in the appendix. Second, the latter’s critical point
occurs when the weight z per hard-hexagon is z=zc
��1
+	5� /2�5=11.09. . . . To get model 3 at infinite temperature,
the configurations must all be of equal weight, i.e., z=1.
Perturbing z away from zc is relevant. It is not clear whether
allowing the additional configurations is relevant or not. It is
conceivable that the two perturbations could effectively can-
cel, leaving one at the hard-hexagon critical point, but we
have no evidence for this.

There are no unitary critical points with Z3 symmetry and
c�4/5, so our model cannot be critical with these central
charges. There are several with 4/5�c�3/2, so it is con-
ceivable that it could be critical with these central charges,
but we have found no evidence for this.

V. TRANSFER MATRIX

In this section we define the transfer matrix, and show
that it possesses some remarkable and unusual properties at
infinite temperature. We exploit these properties in the next
section to solve our model on a different lattice, and then in
Sec. VII to do numerics on very large systems.

Consider the model formulated in terms of noncrossing
domain walls on the links of the triangular lattice. Take the
transfer matrix to act perpendicular to one of the three axes.
The transfer matrix T acts on the space of states on a zig-zag
line; each link is labeled by an index i=1¯2L, where L is
the number of hexagons across the original lattice. We take
the convention that links i and i+1 meet at a vertex when i is
odd. The degrees of freedom are the domain walls on the
links. We denote wi=1 if there is a domain wall on link i, and
wi=0 if there is not. The space of states is then of dimension
2L.

The interactions are at the vertices of the lattice: the fact
that there are only ten vertices must be enforced. It is most
convenient to write T in the form

T = UTUT −1, �4�

where U moves you to the next zig-zag line, which has the
property that links i and i+1 meet at a vertex when i is even.
U therefore imposes the weights at L vertices. The operator T
is the translation operator, which shifts all the spins by one
site. The transfer matrix with periodic boundary conditions
in both directions is therefore Z=tr�TM� for a lattice of 2LM
hexagons. Since T and TT 2 have the same eigenvectors, the
eigenvectors of T are the same as those of UT, and the ei-
genvalues are simply related.

Some interesting conservation laws follow immediately
from the fact that domain walls do not cross. The total num-
ber of domain walls must be conserved mod 2, so �wi is

conserved mod 2. When N is a multiple of 3, this conserva-
tion law is much more powerful: the transfer matrix locally
conserves the number of domain walls mod 2 on each of the
three sublattices. Namely, just as the sites can be divided into
three sublattices, the links can as well; these result in the
three types of the domain walls illustrated in Fig. 1. The
power of the noncrossing constraint is that adjacent domain
walls of different types cannot change places or annihilate as
the transfer matrix evolves the system across the lattice. The
distinct sectors on the cylinder described at the end of Sec.
III are a consequence of this symmetry.

This symmetry is already quite powerful. By studying U,
we find even more remarkable properties. U commutes with
2L local symmetry generators, so the model with transfer
matrix U instead of T has a gauge symmetry.

There are two different types of local conservation laws.
The first one is easy to see. Say two consecutive links meet-
ing at a vertex are both occupied, i.e., w2j−1w2j =1. Then
examine the ten vertices in Fig. 3, and take the transfer ma-
trix to act in the vertical direction. There is only one possible
vertex where both incoming links are covered, the last one
drawn. This vertex has both outgoing links covered as well.
Thus acting with U keeps w2j−1w2j =1, while all other verti-
ces have w2j−1w2j =0 before and after U acts. Thus Qj

w2j−1w2j is conserved by U for any integer j.

The second local conservation law is not as obvious. It
involves two adjacent vertices connected by a horizontal
link. This horizontal link is of the same type as the links
2j−1 and 2j+2, so an incoming domain wall on these links
can turn by 120° onto the horizontal link. This conservation
law arises from the facts that there are no allowed vertices
which have just one or three walls touching them, and that
the number of walls of a given type is conserved locally mod
2. To illustrate this, first consider the case where links 2j
−1 and 2j+2 are either both occupied, or both unoccupied.
Computing U requires summing over the two possibilities
for the horizontal link. When the horizontal link is unoccu-
pied, the only allowed contribution to U is to leave the con-
figuration unchanged. When the horizontal link is occupied,
the only allowed configuration is that both-occupied annihi-
lates into both-unoccupied, or vice versa. Therefore U here
does not conserve w2j−1 and w2j+2 individually, but it does
preserve the number of incoming lines mod 2. Defining Rj
= �2w2j−1−1��2w2j+2−1�, here we have Rj =1 before and af-
ter U acts. When one of the two links 2j−1 and 2j+2 is
occupied and the other unoccupied, Rj =−1. In this case,
when the horizontal link is unoccupied, U leaves the con-
figuration unchanged, and when the horizontal link is occu-
pied, the two configurations change place. Thus Rj remains
−1 before and after U acts. Thus Rj is a local conserved
quantity. Note that � jRj = �−1�W, where W=�iwi is the total
number of walls �which is indeed conserved mod 2�.

The quantities Qj and Rj are not conserved in the full
model, because they do not commute with translation opera-
tor T. However, in the infinite-temperature case K=0, they
do allow the nonzero eigenvalues of the full transfer matrix T
to be found from much smaller matrices. For example, we
show in Sec. VII how this gives the largest eigenvalue of T
for L=6 from a 5-by-5 matrix, considerably smaller than the
212�212 transfer matrix obtained without exploiting any
symmetries
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The key simplification in the K=0 limit is that U becomes
a sum of projection operators. Precisely, for each set of val-
ues of the Qj and Rj, define a matrix P�Qj� , Rj�� acting on
the 22L states on the zig-zag line. The matrix elements
P�Qj� , Rj��ab are defined to be 1 if both states a and b have
the charges Qj� , Rj�, and 0 if either or both do not. Then the
result is that

U = � P�Qj�,Rj�� when K = 0, �5�

where the sum is over all possible values of Qj =0,1 and
Rj = ±1. Note that not all values are possible: for example, if
Qj =1 and Qj+1=1, then Rj must be 1 as well. The decompo-
sition �5� follows from an extension of the arguments which
led to �U ,Qj�= �U ,Rj�=0. There we saw that each initial
state leads to an outgoing state with the same charges at most
once. Since K=0, all allowed configurations have the same
weight 1, so every entry of U must be 0 or 1. Moreover, by
explicitly examining all the possibilities for each set of four
successive sites 2j−1, 2j, 2j+1, 2j+2 and the horizontal
links touching the two vertices, it is easy to see that U takes
any initial state with given values of Qj, Qj+1, Rj, and Rj+1, to
any final state with the same values. Thus U indeed is block
diagonal, with each block given by the operator
P�Qj� , Rj��.

Let us give an explicit example with L=2 and periodic
boundary conditions. We denote a state with domain walls at
i , j ,k by �i , j ,k�, and the empty state as � �. Consider the
sector which has the same conserved charges as the empty
state, which are Q1=Q2=0, and R1=R2=1. The other states
which have these charges are �1,4�, �2,3�. It is then easy to
check that on these three states

U = P�0,0�,1,1�� = �1 1 1

1 1 1

1 1 1
� .

There are two states in each of the other sectors with Q1
=Q2=0. When R1=−R2=1, the sector is comprised of �2�
and �3�, when R1=−R2=−1 it consists of �1� and �4�, and
when R1=R2=−1, it consists of �1,3� and �2,4�. Within any
of these sectors,

U = �1 1

1 1
� .

U for each of the seven states with Q1=1 and/or Q2=1 is
diagonal: there is only one state in each sector.

The product of two different projection operators is zero,
and each P2=nP, where n is the number of states in this
sector. Each P has only a single nonzero eigenvalue n, and
the corresponding eigenstate is the equal-amplitude sum over
all states in the sector. Thus most states in the Hilbert space
are annihilated by T. The eigenstates of T with nonzero ei-
genvalues have an important property, following from the
fact that all states in the same sector end up with the same
coefficient after acting with U. Since U is the last part of T,
the final state after acting with T must have the same prop-
erty: all states with the same values of Qj� and Rj� have the
same coefficient in the end. This means that at K=0, all

eigenstates of T with nonzero eigenvalue must have the same
property as well!

We can therefore work in a space of states vastly reduced
in size, by keeping just one state in each sector. How to work
out the explicit transfer matrix in this reduced basis is ex-
plained in Sec. VII. We emphasize that the Qj and Rj are not
conserved charges for the full transfer matrix T, like they are
for U. The eigenstates of T do not have definite values of the
Qj and Rj, but are a sum over states with different values.
Our result here says that for eigenstates of T with nonzero
eigenvalues, all states in a given sector must have the same
coefficient. This is not a symmetry, because the coefficients
are not the same for eigenstates with zero eigenvalue.

VI. GAUGE-SYMMETRIC MODEL

Since the matrix U commutes with all the local symmetry
generators, using it as a transfer matrix results in a model
with a gauge symmetry. Because of the gauge symmetry, the
resulting “model U” can be reduced to a one-dimensional
model and solved exactly. In this respect it is quite similar to
the two-dimensional Ising gauge theory. However, the solu-
tion of model U has some very striking properties of its own:
the eigenvalues of the transfer matrix are given in terms of
Fibonacci numbers. We derive this here.

Model U is the Ising model with constraint �1� around
each plaquette of the lattice pictured in Fig. 9. It is the square
lattice, with an extra site added to all the horizontal links. It
is therefore not rotationally invariant.

We find explicit expressions for the eigenvalues of U in
the limit K=0, where we can exploit the fact that its transfer
matrix U can be written as the sum �5�. This means that the
eigenstates are the sum over all states in a given sector, and
the corresponding eigenvalue is the number of states in that
sector. This turns out to be an amusing combinatorial prob-
lem.

Let us consider the sector including the empty state,
which has all Qj =0 and all Rj =1. Having Qj =w2j−1w2j =0
means that the links 2j−1 and 2j are not both occupied by
walls. Having Rj =1 means that either both of the links 2j
−1 and 2j+2 are occupied, or neither one is. The eigenvalue
for P�0,0 , . . . � , 1,1 , . . . �� is then the number of states 	0

satisfying these constraints. To count these, note that if both
links 2j−1 and 2j+2 are occupied, then links 2j and 2j+1

FIG. 9. �Color online� The lattice for model U.
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must be unoccupied, in order to preserve Rj =Rj+1=0. But if
these latter two links are unoccupied, then links 2j−3 and
2j+4 must be unoccupied as well, to keep Qj−1=Qj+1=1.
This rule gives a way of counting the configurations in this
sector using one-dimensional transfer matrix V, which propa-
gates the system by two sites. Start at one end. If w1=w4
=0, then w3=w6 can be either 0 or 1. However, if w1=w4
=1, then w3=w6=0. Iterating this procedure along the whole
line gives

	0 = tr�VL�,

V = �1 1

1 0
� .

The first row and column of V correspond to unoccupied
links, while the second correspond to occupied ones. It is
simple to show by induction that

Va = �Fa+1 Fa

Fa Fa−1
� ,

where Fa is the ath Fibonacci number �F0=0, F1=1, and
Fa=Fa−1+Fa−2 for the rest�. Thus

	0 = FL+1 + FL−1

which for large L grows as 
L+1, where 
= �1+	5� /2 is the
golden mean.

Using a transfer matrix in one dimension makes it pos-
sible to write an expression for all the eigenvalues. First
consider the case with all Rj =1 except R1=−1, and all Qj
=0. If w1=1−w4=0, then w3=1, but if w1=1−w4=1, then
w3 can be either 0 or 1. Thus the one-dimensional �1D� trans-
fer matrix for j=1 is VA, where

A = �0 1

1 0
� .

The eigenvalue 	1 for the case where one of the Rj is flipped
to −1 is therefore

	1 = tr�AVL� = 2FL = 	0 − FL−3.

In general, when a given Rk=−1, one simply inserts A at the
kth site. Thus if Rk=Rk+a=−1 with all others remaining 1, we
have the eigenvalue

	a,L−a = tr�AVaAVL−a� .

By using various identities for Fibonacci numbers, one finds

	a,L−a = 	0 − FL−aFa.

Letting some of the Qj be 1 can be handled in a similar
fashion. As noted above, having Qk=1 means that the walls
on links k−2 and k+3 automatically follow from knowing
Rj−1 and Rj. This is handled in the transfer-matrix formalism
by inserting the matrix VB at the site of every Qk=1, where

B = �0 0

0 1
� .

Thus when Qk=1 for some k while all other Qj =0 and all
Rj =1, we have the eigenvalue

tr�BVL� = FL−1 = 	0 − FL+1.

This eigenvalue is smaller than 	1 and 	a,L−a; the eigenvalue
	0 is the largest, with 	1 the next highest.

Continuing in this fashion, one obtains the general for-
mula

	�Qj�,Rj�� = tr�VXLVXL−1 ¯ VX2VX1� , �6�

Xj = A�1+Rj�/2B1−Qj . �7�

The conservation laws still hold when K�0, so U re-
mains block diagonal. However, the blocks are no longer
projection operators, so there is generically more than one
nonzero eigenvalue per block. We suspect, however, that the
gauge symmetry makes it possible to write the eigenvalues
here in terms of a one-dimensional transfer matrix like Eqs.
�6� and �7�.

VII. NUMERICAL RESULTS

To use exact diagonalization on the transfer matrix of the
full model at K=0, we utilize the trick described in Sec. V to
reduce its size. This enables us to find its largest eigenvalue
for cylinders of up to L=18 hexagons �36 Ising sites�.

Each state in this new space is labeled by the values Qj�
and Rj�, which for short we call B. After UT acts, giving
every element in the same block the same coefficient, we
label the blocks B�. To work out the transfer matrix in this
new basis, first one needs to list all the states in a given block
B. Pick one and act with T, i.e., just shift the whole thing
over by one site. Compute the new values of Qj� and Rj�
after the shift, or equivalently, compute Q̃j =w2jw2j+1 and

R̃j = �2w2j −1��2w2j+3−1�, which we collectively label B̃. The
block B� reached from acting with UT on this element B is

then labeled by Qj� and Rj�, where Qj = Q̃j and Rj = R̃j for
all j. One does this for each element in the block B: work out

B̃ and then B� for each, and then increase the element RB�B
by 1. Going through all the blocks gives the reduced transfer
matrix R.

Since the eigenvectors of UT are the same as those of T,
and the eigenvalues are simply related, we focus on this. To
give an example, for L=2, we have

UT =�
1 0 0 1 1

1 0 0 1 1

1 0 0 1 1

0 0 1 0 0

0 1 0 0 0
� ,

which has eigenvalues 2 ,−1 ,0 ,0 ,0. Note that it is not sym-
metric. There are three blocks here. The block B=1 has three
states �� , �14� , �23�, the block B=2 has just �12�, and the
block B=3 has just �34�. Upon acting with T, � � goes to the
block � �, which means UT takes it to all the members of this
block. Thus we increase R11 by 1. Acting with T on �14�
takes it to �12�, so we increase R21 by 1. Acting with T on
�23� gives �34�, so R31=1. Doing this for the other two
blocks gives
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R = �1 1 1

1 0 0

1 0 0
� .

This has eigenvalues 2 ,−1 ,0 as we want, and is
symmetric—it just lost some zero eigenvalues.

The ground-state sector for L=3 is even easier. There are
four states in the block 1: � � , �14� , �25� , �36�. These all go to
the same block under UT, so the reduced transfer matrix is
simply a number: 4. This is indeed the largest eigenvalue
here. For higher L, the size of R still increases exponentially,
but not as quickly. To give an example of how much this
reduces the size of the matrix, exploiting translation invari-
ance and parity as well means that the largest eigenvalue of
UT for L=6 is the same as that of the 5-by-5 matrix

�
4 6 6 0 2

2 6 4 2 0

1 2 2 0 0

0 1 0 0 0

1 0 0 0 0
� .

In this and all the examples we have examined, R is upper
left triangular.

We have used this reduced transfer matrix for the domain-
wall loop representation in numerical simulations of transfer
matrices with width up to 18 hexagons in model 1 �36 Ising
variables�. The resulting largest eigenvalues for widths that
are multiples of 3 are shown in Table I. The entropy per
hexagon converges to a number right in the middle of the
upper �from the three-color model� and lower �from the hard-
hexagon model� bounds given in Eq. �A2��.

Expanding the largest eigenvalue in a power series in 1/L
gives additional valuable information. When the system is at
a conformally invariant critical point, the subleading piece is
universal and proportional to the central charge �23�, which
must obey c�1/2 in any system with positive Boltzmann

weights. If the system is not critical, this piece should fall off
to zero as L→�. The precise formula for our case is

f =
ln 	

L
= f0 +

�c

6

	3

2

1

L2 + ¯ . �8�

Here L is the width in hexagons, 	 is the largest eigenvalue
of UT, and the geometrical factor 	3/2 results from the ratio
between the width and length of the transfer-matrix step. The
resulting estimates of central charge for our model do not
converge even at the largest system sizes, while for the three-
color model, extrapolation from smaller sizes gives a central
charge consistent with the expected value c=2 �20–22�.

The conclusion of this transfer-matrix study is that our
model is most likely not described by the c=2 critical theory
of the three-color model, even though large system sizes are
required to see the difference. Since the central charge does
not seem to be converging to anything, the numerical results
are in harmony with the field-theory arguments of Sec. IV in
suggesting that our model is noncritical �i.e., has a finite
correlation length�. We cannot categorically rule out that it is
critical with c�2, but have no evidence for this scenario.

VIII. FURTHER DIRECTIONS:
QUANTUM THEORY

In this paper we discussed constrained classical lattice
models. By imposing some simple constraints on Ising spins,
we found a variety of intriguing properties. In particular, we
showed that the space of states on the sphere is connected
under local moves, and that on surfaces with noncontractible
cycles, different sectors can be labeled by loop configura-
tions. We also presented substantial �if not conclusive� evi-
dence that the model is not critical.

In the Introduction, we mentioned a quantum motivation
for studying classical lattice models with constraints. The
results of this paper imply that our model has the right char-
acteristics to yield a quantum model with a topological
phase, with the added intriguing possibility that the excita-

TABLE I. Results of numerical transfer-matrix calculations on model 3 with periodic boundary condi-
tions, compared to three-color model. The estimated central charge cest and bulk free energy f0,est are obtained
for n hexagons by fitting the entropy values for n and n−3 hexagons to Eq. �8�. Extrapolations of entropy per
site to the infinite system fit the last three points to c0+c2L−2+c4L−4.

Width �˝� S /˝ cest f0,est

Model 3 Three-color Model 3 Three-color Model 3 Three-color

3 0.4621 0.4621

6 0.3911 0.4028 1.880 1.569 0.3674 0.3830

9 0.3771 0.3900 2.000 1.829 0.3659 0.3798

12 0.3722 0.3853 1.990 1.914 0.3660 0.3793

15 0.3700 1.965 0.3660

18 0.3688 1.942 0.3661

� � �
� 0.3661 0.3791 1.99 0.3661 0.3791

Theory 0.379114 2 0.379114
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tions have non-Abelian statistics. We therefore will conclude
this paper with a discussion of the quantum model in more
detail.

The connection between quantum and classical models
comes from a trick due to Rokhsar and Kivelson �10�. Let
the basis elements for the Hilbert space for the quantum
model consist of configurations in the two-dimensional clas-
sical lattice model. Then one can construct a quantum Hamil-
tonian acting on these states with a ground state consisting of
a superposition of these states, with each term having an
amplitude corresponding to its weight in the classical model.
Correlators in the ground state of the quantum model are
then related to the correlators in the classical model.

In the quantum model, one need not impose the con-
straints directly on the Hilbert space, but rather one can add
an energy penalty for configurations which violate the con-
straint. The ground state then contains only configurations
satisfying the constraint. Violating the constraint locally then
corresponds to a quasiparticle excitation. Thus for a given
classical model, one can obtain very different quantum mod-
els depending on which defects are allowed and which are
not.

Let us make this explicit in terms of model 1. Here we
can take the Hilbert space to be comprised of two-state Ising
variables on the sites of the honeycomb lattice. One simply
imposes an energy penalty on configurations violating con-
straint �1�, i.e., for each hexagon h one includes Mh

2 in the
Hamiltonian. The off-diagonal terms in the Hamiltonian are
given by the flip we defined in Sec. III, as displayed in Fig.
5. The trick of Rokhsar and Kivelson is to add a potential
which, combined with the flip, is a projector. Namely, we add
a potential term which counts the number of flippable hexa-
gons. Then the Hamiltonian is

H1 = �
h

�Nh − Fh + �Mh�2� ,

where Fh is the flip and Nh is the number of flippable
plaquettes. It is simple to write H1 explicitly in terms of Ising
spins, but the expression is quite unwieldy. The lowest eigen-
value of H1 is zero, since it is the sum of projectors and a
positive diagonal term. The ground state on the sphere is
unique, and consists of the equal-amplitude sum over all
configurations satisfying constraint �1�. On surfaces with
contractible cycles, the local flip cannot change the sectors
described above. There will be a ground state for each of
these sectors, consisting of the equal-amplitude sum of all
the configurations in the sector satisfying the constraint.

The reason for the interest in quantum models of this type
is that they often have topological order. Topological order
means that there is no local order parameter with a nonvan-
ishing expectation value, but only nonlocal ones. By using
the Rokhsar-Kivelson trick, it was demonstrated that a quan-
tum eight-vertex model �9� and a quantum dimer model on
the triangular lattice �4� indeed have topological order. The
quantum model with Hamiltonian H1 indeed should have to-
pological order, since the number of ground states depends
on the genus of the surface, a telltale sign. One reason why
models with topological order are interesting is that they can
lead to excitations with fractional statistics. Nontopological

solid and superfluid quantum phases near the Rokhsar-
Kivelson point corresponding to our model, and possible un-
conventional phase transitions, are discussed using a two-
component quantum height model in Ref. �17�.

The excitations in the quantum model with Hamiltonian
H1 correspond to hexagons with different numbers of up and
down spins. The specific Mh we chose means the lowest-
energy defects have Mh= ±2. These are illustrated in Fig. 10.

In the loop language, they correspond to joining loops of
different types. With the Hamiltonian H1, these defects have
no dynamics, but one can of course add terms allowing them
to move.

Changing the potential to favor other kinds of defects
gives different theories. Allowing just Mh= ±4 defects gives
a variation on the “odd” Ising gauge theory described in
depth in �24�; these defects correspond to allowing loops �the
domain walls of model 3� to cross. Allowing just Mh= ±6
defects gives a quantum version of the three-color model,
i.e., the defects are the 11th vertex shown in Fig. 4. Note,
however, that even though the ground states of all three mod-
els we have introduced are identical, their local defects can
be quite different. The defects just described are nonlocal in
the color representation of model 2, because the three colors
become rotated upon circling, i.e., each bond no longer has a
uniquely defined color �13�. Likewise, another kind of defect
we could introduce would be to treat the loops in model 3 as
the degrees of freedom for the quantum model. Then we can
allow defects to correspond to loops with ends �like the end
of a flux tube in gauge theory�.

The defects we have discussed have an important prop-
erty: although the energy Mh

2 associated with them is local,
they are attached to zero-energy defect lines, which can only
end in another defect. For example, a Mh= ±2 defect has two
types of domain walls attached, which must eventually end
in another defect. This property makes it likely that the cor-
responding quasiparticles have fractional statistics, because
when particles are exchanged, they must pass through these
defect lines.

The Mh= ±2 defects illustrated in Fig. 10 are particularly
intriguing. Since the model has an S3 symmetry under ex-
change of the Ising models, these defects can be classified in
representations of this non-Abelian symmetry. �Note also
that the larger symmetry generated by the global conserved
quantities of the classical transfer matrix is non-Abelian as
well.� This makes it possible that a suitable choice of Hamil-
tonian will result in non-Abelian braiding of the excitations,
a topic of great current interest because of potential applica-
tion to topological quantum computation �25�.

These arguments make it likely that one can realize a
phase with topological order using our model as a starting
point. To prove this, more work needs to be done. One needs
to prove that the quasiparticles are deconfined, i.e., that lines
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FIG. 10. �Color online� Defects occurring in model 1 when
Mh=2.
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connecting the defects have no energy per unit length in the
quantum theory. This does seem very plausible, given that
Mh is nonzero only at the location of the defect. In the three-
color model, these defects have binding free energy that
scales as a power law �13�, which is critical between con-
finement and deconfinement. A related question is proving
that the ground state of the Hamiltonian contains macro-
scopically long loops even in the continuum limit; many ex-
amples are known of lattice loop models where the average
loop length �in terms of the lattice spacing� remains finite.
Also, the Hamiltonian H1 does not allow the defects and
defect lines to cross through each other, making it impossible
to understand the fractional statistics precisely. We leave
these very interesting open questions for future study.
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APPENDIX: RELATION TO OTHER MODELS

Valuable intuition and information can be gained by relat-
ing our model to two well-studied models, the triangular-
lattice Ising antiferromagnet and the hard-hexagon model.
Our model can be found by relaxing constraints on these
two. Since adding constraints reduces the entropy, the maps
described in this section give lower bounds on the entropy of
our model. Moreover, both have critical points different from
that of the three-color model.

The Ising antiferromagnet on the triangular lattice is one
of the classic examples of geometrically frustrated magne-
tism �8�. At zero temperature in the classical model, each
fundamental triangle contains either two up spins and one
down, or two down spins and one up. To avoid confusing
these Ising spins with the earlier ones, we label them as hi
= ±1/2, so the zero-temperature constraint is that the sum of
spins around every fundamental triangle is ��hi= ±1/2. By
drawing each frustrated bond as a dimer on the dual lattice,
this model is identical to the close-packed hard-core dimer
model on the honeycomb lattice, which is known to be criti-
cal �26�.

We now consider a model with the same constraint around
each triangle, but where the degrees of freedom can take any
half integer value ±1/2 , ±3/2 , . . ., not just ±1/2 as in the
Ising antiferromagnet. We call this a “height,” and prove here
that this model is equivalent to ours. The Ising spin �i= ±1
of our model 1 is defined on the sites of the dual honeycomb
lattice by

�i = 2�− 1�i�
�

hi = ± 1, �A1�

where even and odd i are the sites on the two equivalent
sublattices of the honeycomb lattice. The constraint �1� fol-
lows automatically from this definition.

Any height configuration obeying Eq. �A1� therefore de-
fines a configuration in model 1. To finish the proof of

equivalence, we now show that each Ising spin configuration
satisfying constraint �1� generates, up to two arbitrarily
specified half integers, a unique configuration of heights. Fix
a configuration of Ising spins on the honeycomb lattice. Pick
two adjacent sites on the dual triangular lattice, and assign
them arbitrary half integer heights h1 and h2. If one knows
two of the heights around a triangle, and the value of the
Ising spin at the center of the triangle, then Eq. �A1� deter-
mines the third height uniquely. Consider the sites illustrated
in Fig. 11. Applying Eq. �A1� to the two triangles containing
both h1 and h2 gives the heights h3 and h4. Applying Eq.
�A1� again to the triangles involving �h1 ,h3� and �h1 ,h4�
gives two more heights h5 and h6. There is now another
height h7 which belongs to a triangle involving �h1 ,h5�as
well as to a triangle with �h1 ,h6�. Again applying Eq. �A1� to
either of these triangles gives h7; because of the constraint
�1� it is determined uniquely. This therefore determines all
the heights on the six triangles involving h1. Repeating this
process for the triangles around the heights h2¯h7 then de-
termines the heights on another concentric ring. In this fash-
ion all the heights follow from the Ising-spin configuration.
The constraint �1� ensures that these are unique, up to the
two original choices of h1 and h2. The indeterminacy of these
two half integers can be understood simply by noting that, if
three integers a ,b ,c are added to the height variables glo-
bally on the three sublattices of the triangular lattice, then as
long as a+b+c=0, the resulting Ising spin configuration on
the honeycomb lattice is unchanged.

Our model is obtained by relaxing a constraint on the
zero-temperature Ising antiferromagnet, so it provides a
lower bound on the entropy of our model. The honeycomb-
dimer model equivalent to the former has an entropy of
0.323¯ per hexagon �1,26�. A slightly better lower bound
can be obtained by relating our model to another interesting
model, the hard-hexagon model.

The hard-hexagon model is defined by placing particles
on the sites of the triangular lattice, so that no two particles
are adjacent or on the same site. Each particle can equiva-
lently be viewed as a “hard” hexagon with the length of a
link: the restriction that particles cannot be placed on adja-
cent sites means that the hexagons may not overlap �15�. A
typical configuration is drawn in Fig. 12. The relation be-
tween model 3 and hard-hexagons comes by drawing lines
surrounding any clusters of hexagons, as shown in Fig. 12.

h1
h2

h3
h5

h7
h6

h4

FIG. 11. The labels used in the text to establish the equivalence
between model 3 and a generalization of the triangular lattice Ising
antiferromagnet.
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Each of these loops corresponds to a domain wall in one of
the three Ising models on the three triangular sublattices. By
construction, these loops do not cross, although they can
touch. Thus each configuration in the hard-hexagon model
corresponds to one in model 3. The converse is not true:
there are configurations in model 3 not in the hard-hexagon

model. In model 3, one can have domain-wall loops inside of
other loops, as long as they do not cross. If there is a domain-
wall loop of one Ising model inside that of another, this
corresponds in the hard-hexagon model to placing a hexagon
on top of others. This is forbidden there.

Both the hard-hexagon model and the three-color model
without constraint �2� are integrable. In both cases, one can
compute the asymptotic behavior of the number of configu-
rations as the number of sites gets large �3,15�. Since our
model has more configurations than the hard-hexagon model
and less than the three-color model, this gives lower and
upper bounds on the entropy S in this limit:

0.3332 �
S

N
� 0.3791, �A2�

where N is the number of sites on the triangular lattice in
model 3 �the number of hexagons in the honeycomb lattice
in model 1�. Our numerics discussed in Sec. VII give S /N
=0.3661. . ., consistent with these bounds.
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FIG. 12. �Color online� A typical configuration in the hard-
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